Classic 2048 puzzle game redefined by AI.
Our version of 2048 stands out in the market with its unique approach. We have incorporated advanced algorithms to develop an AI system for the classic 2048 puzzle game.
- Redefined by AI
We have successfully created an AI system that utilizes a variety of state-of-the-art algorithms to enhance the gameplay experience. These algorithms include Monte Carlo Tree Search (MCTS) [a], Expectimax [b], Iterative Deepening Depth-First Search (IDDFS) [c], and Reinforcement Learning [d].
- Monte Carlo Tree Search (MCTS) is a heuristic search algorithm initially introduced in 2006 for the game of computer Go. Over time, it has proven effective in other games such as chess and, of course, 2048. MCTS selects the best possible move from the game tree's current state, similar to IDDFS.
- Expectimax search is a variation of the minimax algorithm that incorporates "chance" nodes into the search tree. This technique is commonly utilized in games with unpredictable elements, such as Minesweeper (random mine placement), Pacman (random ghost movement), and our very own 2048 game (random tile spawning positions and values).
- Iterative Deepening Depth-First Search (IDDFS) is a search strategy that repeatedly runs a depth-limited version of DFS with increasing depth limits. IDDFS shares the optimality of breadth-first search (BFS) while using significantly less memory. Our implementation of 2048 AI assigns heuristic scores or penalties to various features (e.g., empty cell count) to compute the optimal next move.
- Reinforcement learning involves training ML models to generate actions or decisions within an environment, with the goal of maximizing cumulative rewards. Our 2048 RL implementation doesn't rely on any hardcoded intelligence, which means it doesn't utilize heuristic scores based on human understanding of the game. The AI agent independently "figures out" the best moves as we train the model.
References:
- [a] Monte Carlo Tree Search
- [b] Expectimax Search
- [c] Iterative Deepening Depth-First Search
- [d] Reinforcement Learning
概要
2048 (3x3, 4x4, 5x5) AI は、 Huan Linによって開発されたカテゴリ ゲーム&エンターテイメント の Freeware ソフトウェアです。
2048 (3x3, 4x4, 5x5) AI の最新バージョン 6.5 2023/11/12 にリリースです。 それは最初 2023/11/12 のデータベースに追加されました。
2048 (3x3, 4x4, 5x5) AI が次のオペレーティング システムで実行されます: iOS。
ユーザー 2048 (3x3, 4x4, 5x5) AI の 5 5 つの星からの評価を与えた。
関連製品
2025/01/30 | Dolby Digital Live Pack 4.02.00 |
2025/01/30 | HDClone X Free Edition 15 |
2025/01/30 | Canon Quick Utility Toolbox 2.6.3 |
2025/01/30 | Malwarebytes Windows Firewall Control 6.12.0.0 |
2025/01/30 | AVGAntiTrack 3.4.1022.670 |
2025/01/29 | Teamviewer 15.62 and other version updates available |
2025/01/24 | Vivaldi 7.1 with improved dashboard available |
2025/01/22 | VeraCrypt 1.26.18 available |
2025/01/22 | Oracle January 2025 Patch Update available |
2025/01/16 | Adobe January 2025 Patch Day |
最新のレビュー
Dassault Systemes Software Prerequisites x86
前提条件x86を使用して、Dassault Systemesソフトウェア用にコンピューターを最適化します |
|
MapsGalaxy Internet Explorer Toolbar
MapsGalaxyでWebをナビゲートする:ブラウジングを強化するためのユーザーフレンドリーなツールバー |
|
Thinkfree Office NEO
Thinkfree Office NEO:オールインワンのオフィススイートソリューション! |
|
Adobe Help Manager
Adobe Help Managerによるサポートの効率化 |
|
HPLJPMFPM225-226
日常のニーズに対応する信頼性の高い印刷ソリューション |
|
Xeoma
Xeoma:汎用性の高いビデオ監視ソリューション |